

OPEN ACCESS

EDITED BY Kai Wang, Harvard Medical School, United States

REVIEWED BY
Kun Man,
Emory University, United States
Pranabananda Dutta,
Charles R. Drew University of Medicine and
Science, United States

*CORRESPONDENCE
Shams Tabrez,

✓ shamstabrez1@gmail.com

RECEIVED 29 May 2024 ACCEPTED 09 July 2024 PUBLISHED 26 July 2024

CITATION

Kaleem M, Thool M, Dumore NG, Abdulrahman AO, Ahmad W, Almostadi A, Alhashmi MH, Kamal MA and Tabrez S (2024), Management of triple-negative breast cancer by natural compounds through different mechanistic pathways. Front. Genet. 15:1440430. doi: 10.3389/fgene.2024.1440430

COPYRIGHT

© 2024 Kaleem, Thool, Dumore, Abdulrahman, Ahmad, Almostadi, Alhashmi, Kamal and Tabrez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Management of triple-negative breast cancer by natural compounds through different mechanistic pathways

Mohammed Kaleem¹, Mandar Thool², Nitin G. Dumore¹, Abdulrasheed O. Abdulrahman³, Wasim Ahmad⁴, Amal Almostadi⁵, Mohammad Hassan Alhashmi^{5,6}, Mohammad Amjad Kamal^{5,7,8,9,10} and Shams Tabrez^{5,6*}

¹Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India, ²Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India, ³Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, ⁴Department of KuliyateTib, National Institute of Unani Medicine, Bengaluru, India, ⁵King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, ⁶Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia, ⁷Center for High Altitude Medicine, Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China, ⁸Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Bangladesh, ⁹Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India, ¹⁰Enzymoics, Hebersham, NSW, Australia; Novel Global Community Educational Foundation, Hebersham, NSW, Australia

Triple-negative breast cancer (TNBC) is the most severe form of breast cancer, characterized by the loss of estrogen, progesterone, and human epidermal growth factor receptors. It is caused by various genetic and epigenetic factors, resulting in poor prognosis. Epigenetic changes, such as DNA methylation and histone modification, are the leading mechanisms responsible for TNBC progression and metastasis. This review comprehensively covers the various subtypes of TNBC and their epigenetic causes. In addition, the genetic association of TNBC with all significant genes and signaling pathways linked to the progression of this form of cancer has been enlisted. Furthermore, the possible uses of natural compounds through different mechanistic pathways have also been discussed in detail for the successful management of TNBC.

KEYWORDS

DNA methylation, genes, histone modification, natural drugs, TNBC, epigenetic mechanims

1 Introduction

Cancer is characterized by an uncontrolled growth of the body's cells (Kaleem et al., 2022; Chunarkar-patil et al., 2024). Several genetic and epigenetic factors have been suggested to be responsible for the development of various types of cancer, resulting in the switch-off/on the tumor suppressor genes. Epigenetics involves studying the mechanisms that can change gene expression without affecting DNA sequence (Füllgrabe et al., 2011; Reddy Dachani et al., 2024). Several epigenetic modifications, such as histone acetylation and DNA methylation, are responsible for cancer development (Kaleem et al., 2021a; Kaleem et al., 2021b).