ORIGINAL ARTICLE

Design of Dual Principles Floating Osmotic Drug Delivery System of Pioglitazone Hydrochloride for Gastro-retention: In Vitro-In Vivo Evaluation

Pankaj Dangre^{1,2} · Navnath Gundre² · Satish Meshram³ · Dilip Madia⁴ · Mangesh Godbole⁵

Accepted: 24 August 2023

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Background This work aimed to design and optimize the gastro-retentive drug delivery system (GRDDS) by employing dual principles, i.e., floating and osmotic for pioglitazone hydrochloride (PGH). PGH is commonly prescribed for chronic type II diabetes mellitus (DM).

Method Floating osmotic drug delivery system (FODDS)-based tablet was prepared to employ a 3²-full factorial design to investigate the influence of HPMC-K4M and NaHCO₃ on floating lag time and in vitro drug release. Furthermore, graphical optimization was carried out to get the optimal combination based on desirability. The excipients-drug interaction was performed by using DSC and FTIR studies.

Results The optimized bath (OF-O) showed floating lag time (s) = 35.55 ± 2.5 and in vitro drug release (%) = 93.27 ± 2.2 . The OF-O showed prolonged release of PGH over 8 h in 0.1 N HCl (pH 1.2). The in vivo estimation of buoyancy in human volunteers in fasted and fed conditions revealed that tablets stayed buoyant in gastric fluid for 8 h. The study concluded that the developed formulation could enhance gastric retention and provide prolonged delivery of PGH.

Conclusion The implementation of dual principles further widens the scope of gastro-retentive drug delivery (GRDDS) for prolonging the drug release in the gastric cavity.

 $\textbf{Keywords} \ \ Gastro-retentive \ drug \ delivery \ system \cdot Pioglitazone \ hydrochloride \cdot Diabetes \ mellitus \cdot Floating \ osmotic \ drug \ delivery \ system \cdot Optimization$

Pankaj Dangre pankaj_dangre@rediffmail.com

Published online: 01 September 2023

- Mangesh Godbole mdgodbole@gmail.com
- Department of Pharmaceutics, DMIHER (DU), Datta Meghe College of Pharmacy, Wardha 442001, MH, India
- Department of Pharmaceutics, Kamla Nehru College of Pharmacy, Butibori 441108, MH, India
- Department of Pharmacognosy, Kamla Nehru College of Pharmacy, Butibori 441108, MH, India
- Department of Pharmacology, Datta Meghe College of Pharmacy, DMIHER (DU), Wardha 442001, MH, India
- Department of Quality Assurance, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur 440037, MH, India

Introduction

Diabetes mellitus (DM) (type II) is acknowledged as a severe public health threat that has a major influence on life expectancy and healthcare spending. Speedy economic expansions and urbanization are the leading cause of the rising prevalence of diabetes around the globe [1]. Type II DM can be better managed and controlled by oral hypoglycemic agents [2]. Pioglitazone hydrochloride (PGH), an agonist of peroxisome proliferator-activated receptor gamma (PPAR_Y), works as an insulin sensitizer, improving glycemic management in patients with type II DM [3]. Moreover, PGH is a more commonly given drug for controlling type II DM, particularly in insulin-resistant type II DM patients with a history of cardiovascular disease and dyslipidemia [2, 3]. Patients with chronic conditions, such as those caused by poor lifestyle choices like DM, are usually prescribed drugs on a daily basis. Because these patients may have poor treatment cooperation due to lifestyle variables such as forgetting

